Innovative Distributed Power Interconnection and Control Systems

Bill Liss
Gas Technology Institute, Des Plaines, IL
Greg Miller
Encorp, Windsor, CO

Presented at the U.S. Department of Energy Distributed Power Program Review Meeting January 29-January 30, 2002 Arlington, VA

Presentation Overview

- Market-Driven, Technology-Based Solutions
 - Collaborative NREL/DOE program and goals
- Distributed Power Market
 - System applications & customer needs
 - Case Study: Chowchilla II Power Generation Station
- Accomplishments and Summary

Development of Innovative Distributed Power Interconnection and Control Systems

Subcontract No. 30605-04

Awarded Under the NREL/DOE Distributed Power Program
Distributed Power System Integration Research and Development

NREL Technical Monitor: Tom Basso

Principal Investigator: Bill Liss, Gas Technology Institute, Des Plaines, IL

Subtier Principal Investigators: Larry Adams and Randy West, Encorp, Windsor, CO

NREL/DOE Project Objective and Goals

Program Objective

Key enabling technologies and system-level integration to help Distributed Power market participants more <u>fully capture the</u> total value provided by DP products.

- Cost-effective DP grid interconnection products, software, and communication solutions
- Improved economics for broad range of DP power systems
- Enhanced DP product capability to integrate, interact, and provide operational benefits
 - Within building energy management systems and electric power systems
 - Resource planning, ancillary services, and load/demand management

NREL/DOE Advanced Interconnect System: Three Phase Work Plan

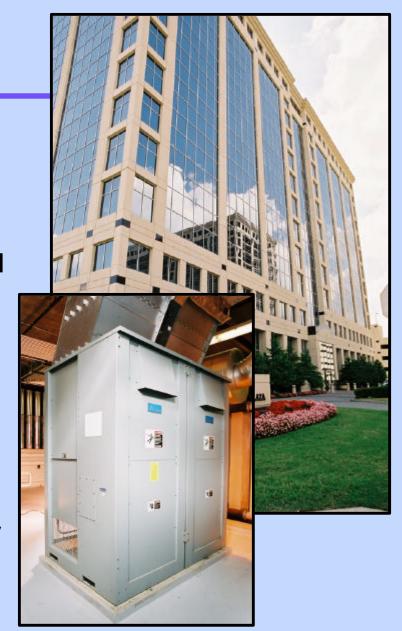
Base Year:

- Core Technology & Software Development
- Develop Next Generation *en*power™ Controller
- Significant Performance Enhancement
- Further Switchgear Packaging Improvement

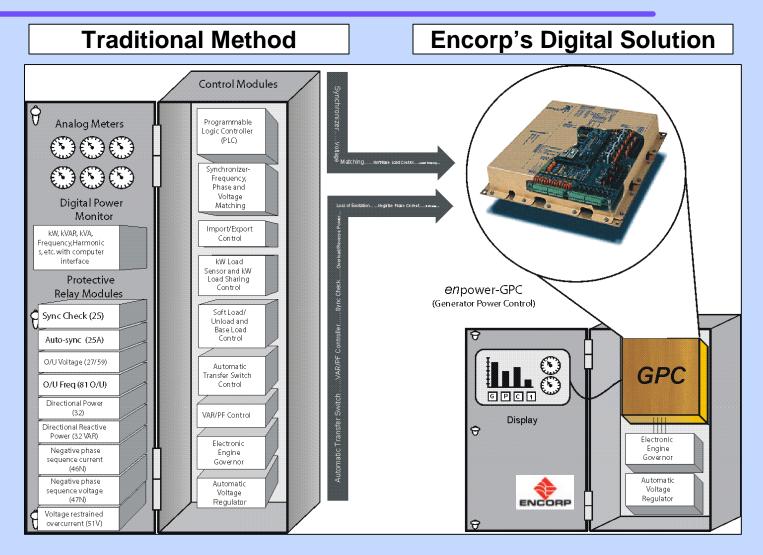
Option Year 1:

- Application & System Level Command and Control
- Option Year 2:
 - Further Development/Demonstration of System Benefits and Validation of Industry Communication Standards
- Program includes substantial cost-sharing by GTI/Encorp
 - Over 5:1 during the Base Year

Program Plan/Tasks


Year One	Core Enabling Technology	
	(1)	Develop Prototype Advanced Controller
	(2)	Develop Prototype Power Sensing Board
	(3)	Expanded Suite of Communication Capabilities
	(4)	Interface for Revenue-Grade Meter
	(5)	Demonstrate Interconnect DP Device
	System Level Command & Control	
Year Two	(6)	Type Testing
	(7)	System Command and Control
	(8)	Demonstration of Controlled DP
	Interoperability & Communications	
Year	(9)	Interoperability Systems Analysis
Three	(10)	Demonstration of Grid-DP Interoperability

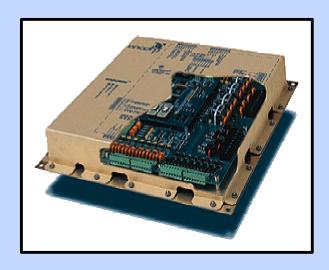
Program Team


- Gas Technology Institute GTI/GRI
 - Bill Liss
 - Karen DePodesta
- Encorp
 - Randy West, Program Manager
 - Larry Adams, Chief Engineer
 - Greg Miller, Vice President

Who Is Encorp?

- Fast-growing, technology-driven company located in Windsor, CO
- Design, develop, and make communication, control, and grid interconnection products
 - Services for the global power markets
 - Focused on power quality, reliability, distributed power
- Extensive market experience:
 - Over 1700 different applications
 - Over 1,000 MW installed capacity

Encorp's Differentiator:The Gold Box & Remote Energy Automation



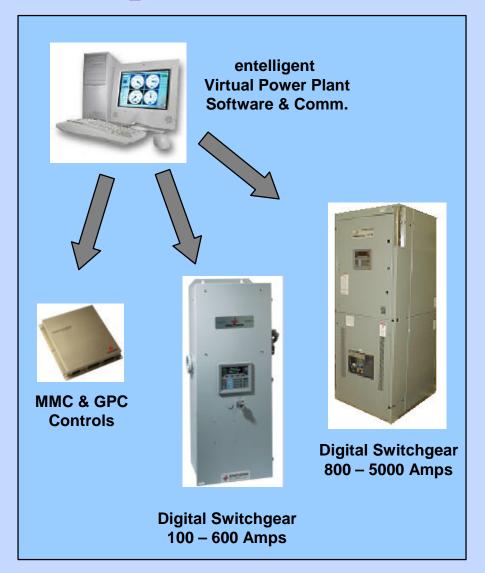
Core Enabling Technology GPC Enhancements During Base Year

- Performance
- Communications
- Scalability
- IEEE P1547 Compliant
- Functionality
- Programmability
- Serviceability
- Lower System Cost

Inside the Gold Box

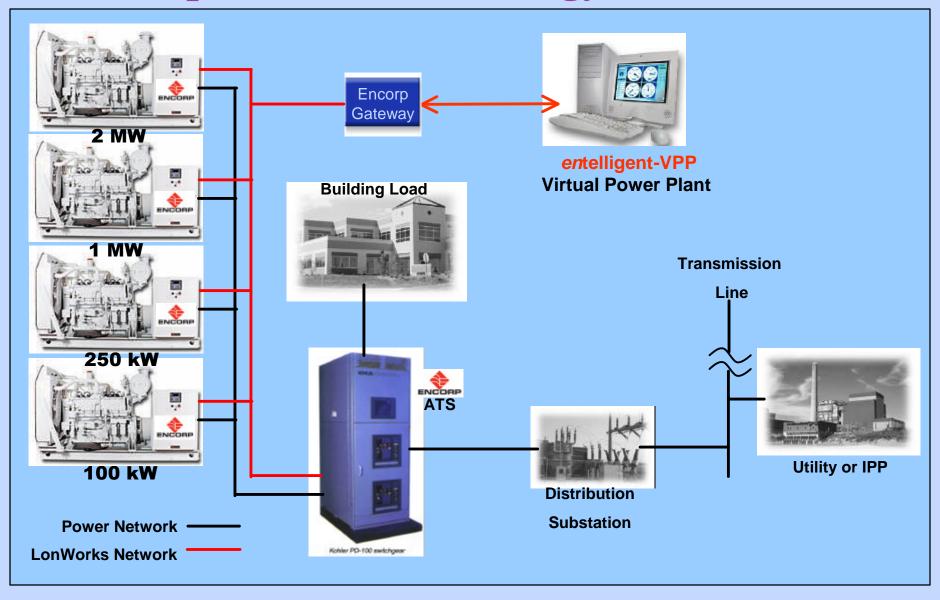
- Digital Control Features
- Prime Mover Start/Stop Sequencing
- Prime Mover Monitoring
- Generator Control Functions
- Utility and Generator Protective relays
- Power Metering (Energy)
- Power Quality Monitoring (Harmonics)
- PLC Logic and Network communications for I/O expandability
- Local & remote PC communications interface

Digital Switchgear



The ENCORP Solution

Simple Design
Cleaner Door Panels
Less Components
High Reliability
Fasier to Manufacture



Encorp's End to End Energy Solutions

Encorp's End to End Energy Solutions

Market Needs

- Technology Driven By Customer Needs
 - Cost savings
 - Reliability
 - Good power quality
 - Interconnect security & safety
 - Ease of system integration
 - Ease of use
 - Access to data & knowledge
 - Flexibility

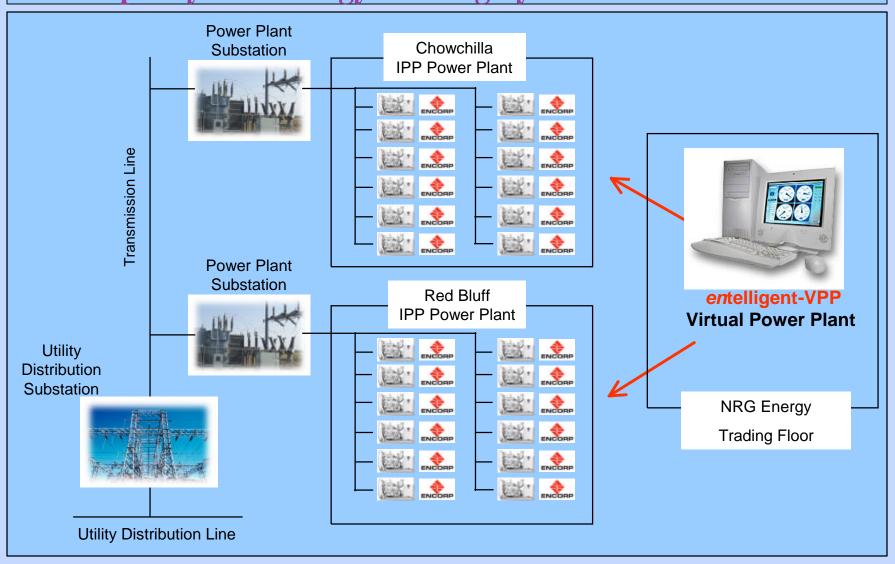
- Application Flexibility
 - Customer/Utility-Owned DG
 - Interruptible rate programs, relieving utility constraints
 - Retail-Type DG
 - Campus power, inside utility meter
 - Critical Power Systems
 - Institutional, financial, e-commerce, industrial
 - CHP/Cogeneration
 - Wholesale-Type DG
 - Wholesale energy/capacity trading,
 Distribution grid peaking

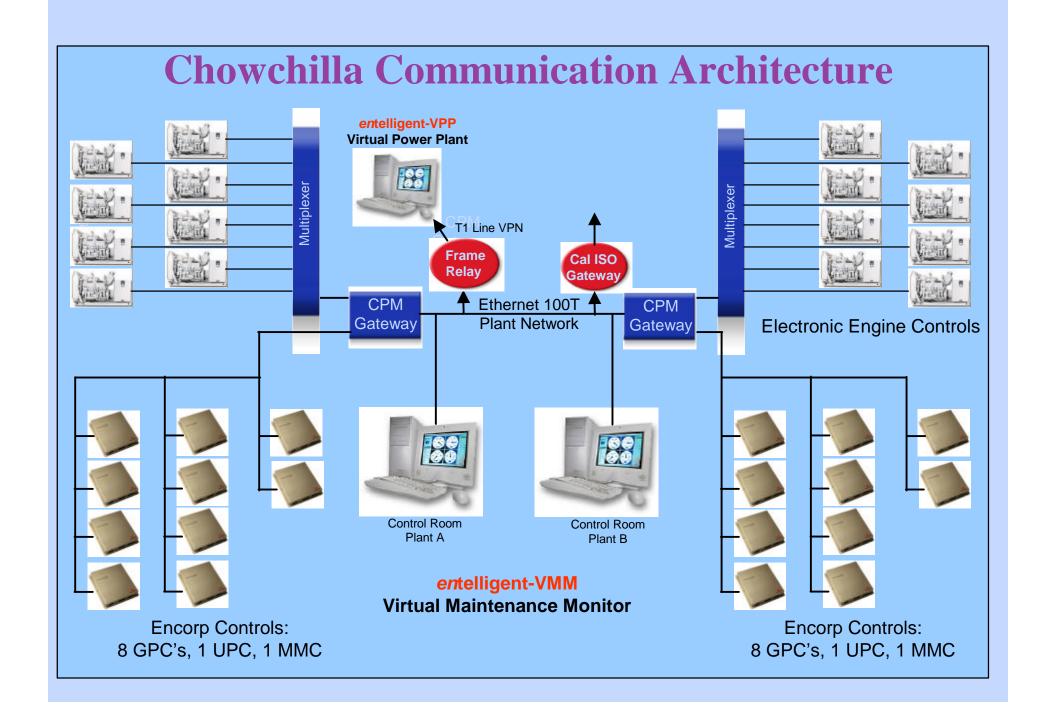
...control and software solutions that are flexible and can simplify complicated system problems

Case Study

- Field Testing Case Study Chowchilla II (California)
 - Wholesale-type DG Application
 - California ISO
 - Application of GPC controller and related Encorp products
 - 16 natural gas fired Deutz generator sets (25 MW)
 - Owned & Operated by NRG Energy/NEO
 - Run from remote site (Minneapolis)
 - Operated in parallel with utility (PG&E)

Chowchilla 50 MW Power Plant





Case Study: Chowchilla II Wholesale Distributed Generation ISO Capacity and Energy Trading Systems

NREL/DOE Project Lessons Learned

- Chowchilla Project Gives Valuable Insights On Future Distributed Power Needs
 - Continued focus on customer value proposition
 - Cost savings
 - Expanded functionality
 - System-based solutions
 - Importance of high-performance processing
 - Importance of communications, monitoring, diagnostics
 - Emphasis on ease of use and flexibility
 - Satisfying needs and concerns of electric power system operators

Base Year Accomplishments

- Program Meeting Expectations on Core Technology Development
- Parallel IEEE P1547 Standard Important
 - Defining functional requirements
 - Supporting standardization/rationalization on communications
- Functional Product Specifications Outlined for Advanced Controller
 - More powerful processor and enhanced controller architecture

Base Year Accomplishments

- New Controller Provides Several Advances
 - Up to twenty fold improvement in processing speed
 - Reduced controller footprint/volume (40%)
 - Reduced manufacturing costs
 - Simplified strategy for wiring and terminal connections
 - Reduced manufacturing and field installation costs
 - Expanded set of controller functions & scalability
 - Expanded communications capability
- Developed anti-islanding control scheme
- Developed loss-of-synchronization control scheme

Base Year Accomplishments

- Field Testing Case Study Chowchilla
 - Results from field application of GPC controller
 - Requirements of working with California ISO, overall system
 - Communications requirements
 - Communications topology
 - Communication protocols
 - Monitoring points
 - Load management
- Draft final report
 - Describes controller development and field test of interconnection hardware

Next Steps

- Gain market feedback on new controller and switchgear design
- Review ongoing IEEE P1547 Developments
 - Key issue are areas that may impact the new controller design
 - Type testing
- Review Option Year 1 plans
 - Refine detailed program plan as needed
 - Begin Phase II focus on type testing and system-level enhancements

Summary

- Significant Opportunity Exists For Further Improving Distributed Power Value Proposition
- Advanced Interconnection Controls and Switchgear a Critical Part of the Equation
- Developing Consensus IEEE Standards for Interconnection and Communications Vital
- This Collaborative Program Has Resulted In Significant Technical Advances
 - Improved controller performance, greater functionality, and reduced switchgear cost
 - Our thanks to DOE, the Office of Power Technologies, and NREL for their support